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In this article, we present a diffusion-generated approach for evolving multiple
junctions. This work generalizes an earlier method by Merriman, Bence, and Osher
which alternately diffuses and sharpens characteristic functions for each phase region
to produce pure mean curvature flow. Specifically, our new method produces a normal
velocity which depends on a positive multiple of the curvature of the interface plus
the difference in bulk energy densities for prescribed junction angles. This simple
method naturally treats topological mergings and breakings, produces no overlapping
regions or vacuums, and can be made very fast. Numerical studies are provided which
show that our method agrees with front tracking and a recent variational approach
for a variety of examples. Asymptotic expansions are also carried out near junctions
to justify our algorithms. c© 1998 Academic Press

1. INTRODUCTION

In a variety of applications, one wants to follow the motion of a front that moves with some
curvature-dependent speed. For the special case of pure mean curvature flow, junctions of
moving surfaces have been treated by alternately diffusing and sharpening the characteristic
functions for each phase region [9, 10]. In this work, we generalize this diffusion-generated
approach to allow each interface to move with a normal velocity equal to a positive multiple
of its curvature,κ, plus a constant.

In two dimensions, the simplest model that we consider involves three curves meeting at
a point with prescribed anglesθ1, θ2, andθ3. Each interface,0i j , separates regionsÄi and

1 This research was partially supported by an NSERC Postdoctoral Scholarship, ONR N00014-97-1-0027 and
NSF DMS94-04942.
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FIG. 1. The interfaces,0i j , move with a normal velocityvi j = γi j κi j + ei j and are subject to anglesθ1, θ2, θ3.

Ä j and moves with a normal velocity,

vi j = γi j κi j + ei j (1)

as is shown in Fig. 1.
A simple motivation for this model is obtained by associating an energy functional with

the system [11, 18]: Givenr distinct regions, we set the total energy of the system equal to
the interface energy

Einterface=
∑

1≤i< j≤r

fi j Length(0i j )

plus the bulk energy

Ebulk =
r∑

i=1

bi Area(Äi ),

where fi j is the constant surface tension of0i j andbi is the (constant) bulk energy density
for Äi . The corresponding gradient flow is then given by

vi j = µi j ( fi j κi j + bi − bj ), (2)

whereκi j andµi j denote, respectively, the local curvature and the constant mobility of the
interface0i j [11]. The velocity of the model (1) is then obtained by settingγi j =µi j fi j and
ei j =µi j (bi − bj ) in Eq. (2) above. See [1, 3, 11, 17, 18] for further details on the model
and its derivation.

To numerically approximate motions of the form (1), several methods have been devel-
oped. Front tracking methods (e.g., [4]) are often well-suited for curves that never cross
because they explicitly approximate the motion of the interface rather than a level set of
some higher dimensional function. When line or planar segments interact, however, de-
cisions must be made as to whether to insert or delete segments. Because complicated
topological changes can occur for the model problem (1) implementation of front tracking
methods is often impractical, especially for more than two dimensions.

Other approaches also have limitations. Monte-Carlo methods for Potts models can in-
troduce unwanted anisotropy into the motion due to the spatial mesh [17] and are typically
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too slow to find accurate approximations of the model. Phase field methods may also be
used, but these are often inherently too expensive for practical computation [10] because
they represent the interface as an internal layer, and thus require an extremely fine mesh (at
least locally) to resolve this layer.

To address these concerns for the case of pure mean curvature flow (i.e., eachγi j = 1 and
ei j = 0), a method (MBO) based on alternatively diffusing and sharpening characteristic
functions was proposed by Merriman, Bence, and Osher [9, 10]. This method naturally
handles complicated topological changes with junctions in several dimensions. Furthermore,
this method can be made efficient by discretizing in space using a Fourier spectral basis and
using a quadrature to determine the Fourier coefficients at each step [13, 14]. Similarly to
all other methods for multiple phase problems, no convergence results are known for the
MBO-method. However, [6, 2] do give rigorous convergence proofs for two phase mean
curvature motion and [8, 13] give some further asymptotic results.

To allow for the more general motion (1), a variational approach was recently proposed
[18] which gives a practical method for treating junctions even when topological merg-
ings and breakings occur. This interesting approach is especially well-suited for treating
problems with additional constraints. Unfortunately, it is unable to approximate many prob-
lems involvingr > 3 phase regions since onlyr independentγi j or ei j may be prescribed
Furthermore, this method limits angles to the classical condition (see, e.g., [16])

sin(θ1)

γ23
= sin(θ2)

γ13
= sin(θ3)

γ12
(3)

at triple points and is relatively slow when compared to the MBO-method for the case of
pure mean curvature flow.

In this paper, we develop algorithms for the multiphase model (1) for any number of
phase regions which retain the speed and much of the simplicity of the MBO-method.
Although the methods given throughout this paper are semi-discrete, we note that efficient2

implementations are possible using the algorithms described in [13, 14]. An outline of the
paper follows.

In Section 2, we give the MBO-method for two phase and multiple phase problems.
Section 3 generalizes the MBO-method to nonsymmetric junctions by replacing the sharp-

ening step with a new decision. Asymptotic and numerical justifications of our algorithm
are also given.

In Section 4, we diffuse each characteristic function a number of times (once for eachγi j )
and combine the results with the nonsymmetric junction algorithm. This gives a method for
evolving each branch with a normal speedv = γi j κ for prescribed angle conditions. For the
special (but important) case where the angles obey the classical condition (3), asymptotic
and numerical justifications of our algorithms are given.

By changing the sharpening decision, Sections 5 and 6 extend these methods to models
which involve bulk energies and any number of phase regions. Numerical justifications of
our methods are given and an example of a four-phase problem which cannot be treated
using the variational approach is also provided.

Section 7 concludes by summarizing our results and discussing some possible areas of
future research.

2 Using a step size1t,O((1/1t) log(1t)) operations are needed for each step of the algorithm [13, 14].
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2. THE MBO-METHOD

An algorithm for following interfaces propagating with a normal velocity equal to mean
curvature was introduced by Merriman, Bence, and Osher [9, 10]. In this section, we des-
cribe the method for the two phase and multiple phase problems. Subsequent sections de-
scribe new algorithms which generalize these methods to the multiphase motions described
by Eq. (1).

2.1. The Two Phase Problem

Suppose we wish to follow an interface moving with a normal velocity equal to its mean
curvature. To evolve a surface according to this motion, we may use the MBO-method for
two regions:

MBO-Method(Two Regions).

BEGIN
(1) SetU equal to the characteristic function for the initial region.

i.e., setU (x, 0) =
{

1 if x belongs to the initial region
0 otherwise.

REPEAT for all steps,j , from 1 to the final step:
BEGIN

(2) Apply diffusion3 to U for some time,1t .

i.e., find U (x, j1t) using

{
Ut = ∇2U,
∂U
∂n = 0 on∂D

starting fromU (x, ( j − 1)1t).
(3) “Sharpen” the diffused region by setting

U (x, j1t) =
{

1 if U (x, j1t)> 1
2

0 otherwise.
END

END

For any timet , the level set{x : U (x, t)= 1
2} gives the location of the interface.

An extension to the case where the normal velocity equals the mean curvature plus a
constant,

vn = a+ κ

is also possible. This motion can be obtained by following the level set

1

2
− 1

2
a

√
1t

π
(4)

instead of the usual level set of1
2 [8].

3 Here we have selected zero flux boundary conditions to ensure that the curve meets the boundary at right
angles, as is appropriate for certain grain growth models [4]. Alternatively, one may minimize the effects of
the boundary by selecting non-reflecting boundary conditions,∂2U

∂n2 = 0, (cf. [18]) or use Dirichlet conditions to
produce a constrained motion.
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2.2. Multiple Regions

To obtain a normal velocity equal to the mean curvature for symmetric junctions (e.g.,
a 120–120–120 degree junction in two dimensions), we may apply the MBO-method for
multiple regions:

MBO-Method(Multiple (r ) Regions).

BEGIN
(1) For i = 1, . . . , r

SetUi (x, 0) equal to the characteristic function for thei th region.
REPEAT for all steps,j , from 1 to the final step:
BEGIN

(2) For i = 1, . . . , r , starting fromUi (x, ( j − 1)1t),
Apply diffusion toUi for some time slice,1t .

i.e., find Ui (x, j1t) using

{
∂Ui
∂t = ∇2Ui ,

∂Ui
∂n = 0 on∂D.

(3) “Sharpen” the diffused regions by setting the largestUi equal to 1 and the
others equal to 0 for each point on the domain.

END
END

For any timet , the interfaces are given naturally as the boundaries of the characteristic sets.

3. NONSYMMETRIC JUNCTIONS

The MBO-method for regions uses a symmetric projection step which results in an
approximation of a 120-120-120 degree junction. We now extend the method to allow for
nonsymmetric junctions and justify our algorithm asymptotically and experimentally.

Throughout the next three sections, we will consider the three phase case. See Section 6
for an extension to more phase regions.

3.1. Nonsymmetric Junction Algorithm

We now generalize the sharpening step for the MBO-method to obtain an algorithm for
nonsymmetric junctions.

Begin by noting that

0≤ Ui (x, t) ≤ 1,

3∑
i=1

Ui (x, t) = 1

for all t since diffusion in linear and
∑3

i=1 Ui (x, 0)= 1. Thus, the ordered triplets,(U1,U2,

U3), form a triangular region with corners (0, 0, 1), (0, 1, 0), and (1, 0, 0) in<3. By
mapping this triangular region onto its corner points we obtain a useful representation of
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FIG. 2. The sharpening decision can be represented using a projection triangle. For the symmetric case, the
regionsR1, R2, andR3 meet at straight lines which pass through( 1

3
, 1

3
, 1

3
) and the midpoints of the edges of the

triangular domain.

the sharpening step [8, 10]. For example, the symmetric sharpening is obtained by setting

(U1,U2,U3) =


(0, 0, 1) if (U1,U2,U3) ∈ R1

(0, 1, 0) if (U1,U2,U3) ∈ R2

(1, 0, 0) if (U1,U2,U3) ∈ R3,

whereR1, R2, andR3 divide the triangular domain symmetrically, as shown in Fig. 2. Other,
nonsymmetric, angle configurations are obtained by taking different choices forR1, R2,
andR3.

We now develop a method for determiningR1, R2, andR3 for curves which meet at a
stableθ1-θ2-θ3 angle configuration. To derive this method we note that in the absence of
boundary effects (cf. [8]),

straight lines which form a junction satisfying the desired angle
conditions must remain stationary for all subsequent times,t
(e.g., Fig. 3).

By enforcing this simple, but necessary condition we are led to the following algorithm for
constructing projection triangles:

FIG. 3. Straight lines formingθ1-θ2-θ3 angles should remain stationary.
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FIG. 4. Initial regions.

PROJECTIONTRIANGLE ALGORITHM.

Given an angle configurationθ1, θ2, θ3:
1. Define lines

0̃12 =
{(

r,
1

2
θ1

)
: r > 0

}
,

0̃13 =
{(

r,−1

2
θ1

)
: r > 0

}
,

0̃23 =
{(

r,
1

2
θ1+ θ2

)
: r > 0

}
and regions,̃Ä1, Ä̃2, Ä̃3 as indicated by Fig. 4. Here, a circular domain has been
selected for simplicity.

2. Setχi equal to the characteristic function forÄ̃i , 1≤ i ≤ 3, as shown in Fig. 5.
3. Apply diffusion to eachχi , 1≤ i ≤ 3, for a timeτ ≤ 1t as is illustrated in Fig. 6.
4. Map each linẽ0i j onto the projection triangle to form the boundaries,˜̃0i j between

regionsRi andRj ,

˜̃0i j = {(χ1(x), χ2(x), χ3(x)) : x ∈ 0̃i j }

as is illustrated4 in Fig. 7. It is convenient to represent˜̃0i j in polar coordinates centered
about the junction (see Fig. 8). Using this representation it is straightforward to deter-
mine which region a pointP = (r p, θp) belongs since

P ∈


R1 if θ12(r p) ≤ θp or θp < θ13(r p)

R2 if θ23(r p) ≤ θp < θ12(r p)

R3 if θ13(r p) ≤ θp < θ23(r p).

Having constructed our projection triangle, it is straightforward to derive the following
properties [8]:

• Each boundary curve passes through( θ1
2π ,

θ2
2π ,

θ3
2π ).

• Each curve must also meet the midpoint of an edge of the triangular domain since
this case reduces to the MBO-algorithm for two phases.

4 On non-circular domains, only half of each linẽ0i j should be mapped (starting from the junction). By
connecting this result to the midpoint of the nearest edge of the projection triangle, an excellent approximation of
˜̃0i j is formed, providedτ is sufficiently small.
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FIG. 5. Characteristic sets.

Note, however, that the lines connecting these endpoints are typically curved. This is
quite clearly illustrated for a 150–90–120 degree junction in Fig. 9 and for a wedge-shaped
junction in Fig. 10. In fact, only the symmetric case and the 180–90–90 degree “T-Junction”
are comprised of straight lines (see Fig. 11).

3.2. Error Analysis

In the previous subsection, we proposed an algorithm for evolving junctions which meet
at a stableθ1–θ2–θ3 angle configuration. We now outline a derivation that shows, symbol-
ically (using Maple [5]), that each step of the method produces anO(

√
1t) error in the

junction angles which is rapidly dissipated in subsequent steps.
Due to the length of the expressions arising in our derivation, we provide the main steps

of the algorithm, but omit most of the intermediate results. See [13] for greater details for
the special case of a symmetric junction.

3.2.1. The initial junction. We wish to derive an expansion for the angles of a two
dimensional triple junction after one step of our method assuming that the angles initially
approximate the desiredθ1–θ2–θ3 configuration.

We begin by orienting a polar coordinate system so that some phase region is centered
aboutθ = 0. Denote the initial interfaces by012, 013, and023 and the initial regions by
Ä1, Ä2, andÄ3 as in Fig. 12.

To represent the small deviations from theθ1–θ2–θ3 junction configuration we define

ε1 = 6 013012− θ1,

ε2 = 6 012023− θ2,

ε3 = 6 013023− θ3,

where6 0i j 0kl is the angle between0i j and0kl at the junction.
In order to carry out our expansions, we want an expression for each interface,

0i j =
{(

r, θ0i j (r )
)

: r ≥ 0
}

FIG. 6. After a timeτ .
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FIG. 7. Projection triangle formed by mapping̃0i j into χ1 + χ2 + χ3= 1.

for some function,θ0i j (r ). Using the above definitions it is straightforward to show that

θ012(r ) =
1

2
θ1+ 1

2
ε1+ 1

2
κ12r + β12r

2+O(r 3),

θ023(r ) =
1

2
θ1+ θ2+ 1

2
ε1+ ε2+ 1

2
κ23r + β23r

2+O(r 3),

θ013(r ) = −
1

2
θ1− 1

2
ε1+ 1

2
κ13r + β13r

2+O(r 3),

whereκi j is the curvature of line0i j at the origin andβi j are constants independent ofr .

3.2.2. Approximation of Ui andχi . We now want to estimateUi at time1t andχi at
time,τ . Initially,

Ui (r, θ,0) =
{

1 if (r, θ) ∈ Äi

0 otherwise,

for 1≤ i ≤ 3. Thus, the Green’s function representation ofU1(r, θ,1t) gives

U1(r, θ,1t)

= 1

4π1t
exp

(
− r 2

41t

)∫ ∞
0

exp

(
− R2

41t

)∫ θ012(R)

θ013(R)
exp

(
r R cos(φ − θ)

21t

)
R dφ d R.

FIG. 8. The boundaries between regions are conveniently represented in polar coordinates centered about the
junction.
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FIG. 9. The projection triangle for a 150–90–120 degree junction.

Replacing the exponential in the inner integral by its series, integrating term by term, and
applying integration by parts to the result (cf. [8, 13]) yields

U1(r, θ,1t) = θ1

2π
+ 1

2π
ε1+ 1

4
√
π
(κ12− κ13)

√
1t + 2

π
(β12− β13)1t

+ 1

2π
(κ12− κ13) cos(θ1) cos(θ) r + 1

2π
(κ12+ κ13) sin(θ1) sin(θ) r

+ 1

2
√
π

sin(θ1) cos(θ)

(
r√
1t

)
+ 1

2
√
π

cos(θ1) cos(θ) ε1

(
r√
1t

)
+ 1

4π
sin(θ1) cos(θ1)(cos2(θ)− sin2(θ))

(
r

1t

)2

+ h.o.t.

which may be written in Cartesian coordinates as

U1(x, y,1t) = θ1

2π
+ 1

2π
ε1+ 1

4
√
π
(κ12− κ13)

√
1t + 2

π
(β12− β13)1t

+ 1

2π
(κ12− κ13) cos(θ1) x + 1

2π
(κ12+ κ13) sin(θ1) y

+ 1

2
√
π

sin(θ1)

(
x√
1t

)
+ 1

2
√
π

cos(θ1) ε1

(
x√
1t

)
+ 1

4π
sin(θ1) cos(θ1)

(
x2− y2

(1t)2

)
+ h.o.t. (5)

To determine an expansion for the value ofχ1 which arises in the Projection Triangle
Algorithm, simply set

ε1 = ε2 = ε3 = 0,

κ12 = κ23 = κ13 = 0,

β12 = β23 = β13 = 0



           

176 STEVEN J. RUUTH

FIG. 10. The projection triangle for a 247.5–67.5–45 degree junction.

in Eq. (5) to obtain

χ1(x, y, τ ) = θ1

2π
+ 1

2
√
π

sin(θ1)

(
x√
τ

)
+ 1

4π
sin(θ1) cos(θ1)

(
x2− y2

τ 2

)
+ h.o.t. (6)

Expressions for the remainingUi andχi are easily obtained via rotations of Eqs. (5) and
(6), respectively.

3.2.3. Angle expansions.We now seek expansions for the angle configuration of the
junction after a time1t .

FIG. 11. The projection triangle for a 180–90–90 degree junction.
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FIG. 12. The initial junction.

Begin by letting01t
12 , 0

1t
23 , and01t

13 be the diffusion-generated approximations to the
branches of the junction after a time1t and parameterize the components of01t

i j according to

01t
i j =

{(
x01t

i j
(s), y01t

i j
(s)
)

: s ≥ 0
}
,

wheres represents arclength from the triple point. Similarly define the components of each
branch,0̃i j , of the stationary problem according to

0̃i j =
{(

x0̃i j
(s), y0̃i j

(s)
)

: s ≥ 0
}
.

To approximate the angle between01t
12 and01t

13 we require an expansion for the location
of the triple point at timet = 1t . This is found by substituting our estimates forUi into{

U1
(
x01t

i j
(0), y01t

i j
(0),1t

) = 1
2π θ1,

U2
(
x01t

i j
(0), y01t

i j
(0),1t

) = 1
2π θ2

and deriving the series solution for(x01t
i j
(0), y01t

i j
(0)).

Our next task is to find the slope of01t
i j at the triple point. This is accomplished by

substituting our expressions forUi andχi into

d

ds

[
Ui
(
x01t

i j
(s), y01t

i j
(s),1t

)]
s=0 =

d

ds

[
χi
(
x0̃i j

(s), y0̃i j
(s), τ

)]
s=0

d

ds

[
U j
(
x01t

i j
(s), y01t

i j
(s),1t

)]
s=0 =

d

ds

[
χ j
(
x0̃i j

(s), y0̃i j
(s), τ

)]
s=0,

where (
x0̃i j

(0), y0̃i j
(0)
) = (0, 0),(

x ′̃
012
(0), y′̃

012
(0)
) = ( cos

(
1

2
θ1

)
, sin

(
1

2
θ1

))
,

(
x ′̃
013
(0), y′̃

013
(0)
) = ( cos

(
1

2
θ1

)
,−sin

(
1

2
θ1

))
,

(
x ′̃
023
(0), y′̃

023
(0)
) = ( cos

(
1

2
θ1+ θ2

)
, sin

(
1

2
θ1+ θ2

))
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and deriving series solutions forx′
01t

i j
(0) andy′

01t
i j

(0). These expansions give the slope of

01t
i j at the triple point,

mi j =
y′
01t

i j
(0)

x′
01t

i j
(0)
.

From the slopes of each branch, we see that the approximation to the first angle,θ1, is
given by

6 01t
120

1t
13 = π − arctan

(
m12−m13

1+m12m13

)
.

Expanding this in terms ofεi and1t gives

6 01t
120

1t
13 = θ1+ a11ε1+ a12ε2+ (c11κ12+ c12κ23+ c13κ13)

√
1t + h.o.t.

A similar derivation gives the approximation for the second angle,θ2,

6 01t
230

1t
12 = θ2+ a21ε1+ a22ε2+ (c21κ22+ c22κ23+ c23κ13)

√
1t + h.o.t.

Combining these results into a single equation we obtain

(
6 01t

120
1t
13

6 01t
230

1t
12

)
=
(
θ1

θ2

)
+ A

(
ε1

ε2

)
+ C

 κ12

κ23

κ13

√1t + h.o.t.,

whereA = [ai j ] andC = [ci j ].
Unfortunately, the matricesA andC are far too complicated to reproduce here. However,

we do provide a contour plot of the spectral radius ofA for each angle configuration
(θ1, θ2, θ3) in Fig. 13a. This plot indicates that the spectral radius ofA is always less than
1. Similarly, we find that each element ofC is bounded in the interior of the triangle (see
Fig. 13b). Thus, each step of the MBO-method produces anO(

√
1t) error in the junction

angles which is rapidly dissipated during subsequent steps. Summing up such contributions5

over many time steps, we expect to obtain a rapidly converging geometric sum which gives
rise to anO(

√
1t) error in total. This is an interesting result because it gives an explanation

for the stability of junction angles and suggests a source of theO(
√
1t) error which arises

in numerical experiments (see the next subsection).

3.3. Numerical Experiments

We now apply our algorithm to problems involving nonsymmetric junctions. See also
[8, 10] for experimental studies of the 180–90–90 degree “T-Junction” case.

To begin, consider the motion by curvature of the three phase problem given in Fig. 14.
Using our nonsymmetric junction algorithm, the position of the triple point and the change

5 This summation step is non-rigorous because it assumes, among other things, thatκ12, κ23, andκ13 are bounded
independent of1t .
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FIG. 13. Matrix properties for each angle configuration(θ1, θ2, θ3). Note thatθ1+θ2+θ3 = 2π and each angle
is between 0 and 2π so each configuration must belong to the triangular region with corners(0, 0, 2π), (0, 2π, 0),
and(2π, 0, 0) inR3. (a) The spectral radius ofA. (b) The maximum element ofC = max|ci j |.
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FIG. 14. A test problem for a 150–90–120 degree junction. Here, eachγi j = 1 and eachei j = 0.

in the area ofÄ1 were compared with the exact results6 for several1t . The results from a
number of experiments are reported in Table I.

These results are suggestive of anO(
√
1t) error which is experimentally the same as

that found for symmetric junctions using the MBO-method [13, 12, 14].
Our new algorithm can even be applied to wedge-shaped regions or to problems which

are initially inconsistent with the desired angle configuration. Consider, for example, the
motion by curvature of the three phase problem given in Fig. 15. Using our nonsymmetric
junction algorithm, the position of the triple point and the change in the area ofÄ1 were
compared with the exact results for several1t . The results from a number of experiments
are reported in Table II.

As found in the previous example, the results are suggestive of anO(
√
1t) error.

4. GENERALIZED CURVATURE MOTIONS

In the previous section, we described a method that treats nonsymmetric junctions for the
case of pure curvature flow. We now extend the algorithm to the case where each branch,
0i j , moves with a normal speed,vn= γi j κ.

Although the algorithm that we provide applies to any angle configuration, our asymptotic
justification and numerical experiments will assume (for simplicity) the classical condition
(3) at triple points which is well known in the material sciences literature (see, e.g., [16]).

4.1. Generalized Curvature Algorithm

We now generalize diffusion-generated motion to the case where each0i j moves with a
normal velocity,

vn = γi j κ. (7)

6 The “exact results” were computed using Brian Wetton’s front tracking code. See [4].
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TABLE I

Results for a 150–90–120 Degree Junction

Junction position Phase area change forÄ1

1t |Error| Conv. ratea |Error| Conv. rate

0.01 5.23e-03 — 3.80e-03 —
0.005 4.03e-03 0.38 2.55e-03 0.58
0.0025 3.05e-03 0.41 1.75e-03 0.54
0.00125 2.25e-03 0.43 1.20e-03 0.54
0.000625 1.65e-03 0.45 8.35e-04 0.52
0.0003125 1.20e-03 0.46 5.86e-04 0.51

a If the error for a step of size1t is E1t , then we estimate the convergence rate
as log2(|E21t/E1t |).

To begin, letU
γi j

k be the solution tout = γi j∇2u after a time1t , starting from the
characteristic function ofÄk and setUγi j = (U γi j

1 ,U
γi j

2 ,U
γi j

3 ). We seek a function,f , which
combinesUγ12,Uγ23, andUγ13 into a single result

U ≡ (U1,U2,U3) = f (Uγ12,Uγ23,Uγ13)

which can be input to the sharpening step.
Several desirable properties forf are easily identified:

• Certainly, f (Uγ12,Uγ23,Uγ13)must reduce to the appropriateUγi j far from the triple
point. Specifically,

f (Uγ12,Uγ23,Uγ13) ≈ Uγi j

for all points near0i j which are a distancedÀ√1t away from the triple point.
• We wantf to be a smooth combination of theUγi j so that the interfaces corresponding

to U are smooth.

FIG. 15. A test problem for a 247.5–67.5–45 degree junction. Here, eachγi j = 1 and eachei j = 0.
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TABLE II

Results for a 247.5–67.5–45 Degree Junction

Junction position Phase area change forÄ1

1t |Error| Conv. rate |Error| Conv. rate

0.01 2.65e-02 — 1.76e-02 —
0.005 2.48e-02 0.09 1.41e-02 0.33
0.0025 2.14e-02 0.22 1.09e-02 0.37
0.00125 1.73e-02 0.30 8.28e-03 0.40
0.000625 1.34e-02 0.37 6.16e-03 0.43
0.0003125 9.47e-03 0.51 4.30e-03 0.52

• We will also assume thatU is a convex combination ofUγ12,Uγ23, andUγ13. This
requirement ensures that each component ofU belongs to [0, 1] and that the components
of U sum to 1.

One simple family of functions which satisfy these requirements is given by

fn(Uγ12,Uγ23,Uγ13) = Uγ12
/∣∣U γ12

3

∣∣n + Uγ23
/∣∣U γ23

1

∣∣n + Uγ13
/∣∣U γ13

2 |n∑3
i=1

(
U γ12

i

/∣∣U γ12
3

∣∣n)+U γ23
i

/∣∣U γ23
1

∣∣n +U γ13
i

/∣∣U γ13
2

∣∣n . (8)

The next two subsections justify this choice off for the casesn= 1 andn= 2. Larger
values ofn were found to produce less accurate results on the test problems we tried.

We now summarize by giving the generalized curvature algorithm:

GENERALIZED CURVATURE ALGORITHM. Given an angle configuration(θ1, θ2, θ3) and
coefficients(γ12, γ23, γ13):

BEGIN
(1) Construct a projection triangle according to the projection triangle algorithm.
(2) For i = 1, . . . ,3

SetUi (x, 0) equal to the characteristic function for thei th region.
REPEAT for all steps,j , from 1 to the final step:
BEGIN

(3) For each coefficientγ = γ12, γ23, γ13 and each regioni = 1, 2, 3,

FindU γ
i (x, j1t) using


∂U γ

i
∂t = γ∇2U γ

i

∂U γ

i
∂n = 0 on∂D

starting fromU γ
i (x, ( j − 1)1t) = Ui (x, ( j − 1)1t).

(4) SetU(x, j1t)= fn(Uγ12,Uγ23,Uγ13) where fn in given by Eq. (8).
(5) “Sharpen”U= (U1,U2,U3) according to the projection triangle defined
in step (1).

END
END
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4.2. Error Analysis

In the previous subsection, we proposed an algorithm for evolving junctions with a normal
velocity, vn= γi j κ, for arbitrary angle configurations. We now give asymptotic estimates
for the angles arising from this algorithm when the classical condition (3) holds.

Begin by letting01t
12 , 0

1t
23 , and01t

13 be the diffusion-generated approximations to the
branches of the junction after a time1t and let

ε1 = 6 013012− θ1,

ε2 = 6 012023− θ2,

ε3 = 6 013023− θ3

be the initial errors in each junction angle (see Fig. 12). As outlined in Subsection 3.2, it is
straightforward (but tedious) to derive asymptotic estimates for the junction angles,(

6 01t
120

1t
13

6 01t
230

1t
12

)
=
(
θ1

θ2

)
+ A

(
ε1

ε2

)
+ C

 κ12

κ23

κ13

√1t + h.o.t.

Unfortunately, the matricesA andC are far too complicated to reproduce here. However,
Fig. 16 gives contour plots of the spectral radius ofA for each angle configuration(θ1, θ2, θ3)

for the choicesf = f1 and f = f2 (see Eq. (8)).
From these plots, it is clear than that the spectral radius is less than 1 (indeed, it is typically

much less than 1) for most angle configurations. For example, the spectral radius is less
than 1 whenever the following simple (but crude) bound holds:

max(θ1, θ2, θ3) <

{
175.9 degrees iff = f1

173.5 degrees iff = f2.
(9)

Furthermore, contour plots indicate that each element ofC is bounded independent of
1t provided eachγi j > 0. Thus, each step of the method produces anO(

√
1t) error in the

junction angles which is rapidly dissipated during subsequent steps provided the spectral
radius ofA is less than 1 (e.g., whenever condition (9) holds). Similar to the case of the
Nonsymmetric Junction Algorithm (see Subsection 3.2) this result explains the stability
of junction angles and suggests a source of theO(

√
1t) error which arises in numerical

experiments (see the next section).

4.3. Numerical Experiments

We now apply the Generalized Curvature Algorithm to the case where each branch of a
junction moves with a different normal velocity,vn= γi j κ.

For example, consider the evolution of the three phase problem given in Fig. 17. Using
the Generalized Curvature Algorithm, the position of the triple point and the change in
the area ofÄ1 were compared with the exact results (see Footnote 6) for several1t . The
results from a number of experiments are reported in Table III forf = f1 and in Table IV
for f = f2.

These results are suggestive of anO(
√
1t) error which is experimentally the same as

the found for pure motion by curvature.
Either f = f1 or f = f2 is adequate for a wide variety of problems (see the previous

subsection). The choicef = f1 has a slightly wider range of applicability (see Eq. (9)).
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FIG. 16. The spectral radii arising for each angle configuration(θ1, θ2, θ3). Here, the classical condition (3)
restricts each angle to be between 0 andπ , so each configuration must belong to the triangular region with corners
(0, 0, π), (0, π,0), and(π, 0, 0). (a) Smoothest selection,n= 1. (b) Alternative choice,n = 2.
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FIG. 17. A test problem for a 150–90–120 degree junction. Here,(γ12, γ23, γ13)= (sin( 5
6
π), sin( 1

2
π), sin( 2

3
π))

and eachei j = 0.

The errors arising fromf = f2 are often more regular, however (e.g., compare Tables III
and IV), which is a desirable property for determining an appropriate step size and for
developing accurate, extrapolated algorithms [14].

5. MULTIPHASE MOTIONS

In the previous section we described a method to treat the case where each branch,0i j ,
of a junction moves with a normal speed,vn= γi j κ. We now extend the algorithm to allow
more general multiphase motions which involve bulk energies (e.g., Fig. 1). Due to the
complicated nature of the analysis, we justify our algorithms experimentally rather than
asymptotically throughout the remainder of this article.

5.1. Multiphase Motion Algorithm

To carry out a sharpening appropriate for the multiphase model, we must construct new
projection triangles. In particular, our projection triangles must satisfy the following:

(a) Along each edge, the sharpening decision must reduce to the case of two phase
flow (4) since edges correspond to regions which are infinitely far from triple points [8].

TABLE III

Results for a 150–90–120 Degree Junction forf = f1

Junction position Phase area change forÄ1

1t |Error| Conv. rate |Error| Conv. rate

0.01 1.27e-02 — 1.97e-03 —
0.005 9.83e-03 0.37 1.76e-03 0.16
0.0025 7.37e-03 0.42 1.44e-03 0.29
0.00125 5.38e-03 0.45 1.12e-03 0.37
0.000625 3.83e-03 0.49 8.32e-04 0.43
0.0003125 2.67e-03 0.52 6.01e-04 0.47
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TABLE IV

Results for a 150–90–120 Degree Junction forf = f2

Junction position Phase area change forÄ1

1t |Error| Conv. rate |Error| Conv. rate

0.01 1.03e-02 — 4.76e-03 —
0.005 7.41e-03 0.47 3.00e-03 0.66
0.0025 5.32e-03 0.48 1.96e-03 0.62
0.00125 3.79e-03 0.49 1.31e-03 0.58
0.000625 2.67e-03 0.50 8.94e-04 0.55
0.0003125 1.87e-03 0.51 6.12e-04 0.55

(b) In the limit1t→ 0, the projection triangle must coincide with the case(e12, e13,

e23)= (0, 0, 0) to obtain junction angles which are consistent with the desired configuration.

For the special case of symmetric junctions, these objectives are easily attained. We
simply set each branch of the decision triangle to a straight line from( 1

3,
1
3,

1
3) to the point

dictated by Eq. (4). See Fig. 18 for an illustration of this construction.
For nonsymmetric junctions, appropriate projection triangles may be constructed by

scaling and rotating the result of our original algorithm (see, e.g., Fig. 19) as follows:

PROJECTIONTRIANGLE ALGORITHM FOR MULTIPHASE MOTION. Given an angle con-
figuration(θ1, θ2, θ3) and constants(e12, e13, e23):

1. Construct a projection triangle using the algorithm given in Subsection 3.1. Represent
the boundaries between the regionsRi and Rj of the triangle in polar coordinates,
{(r, θi j (r ))}, as is shown in Fig. 8.

FIG. 18. The projection triangle for a 120–120–120 degree junction with (solid) and without (dotted) a constant
component to the motion:p12 = ( 1

2
+ 1

2
e12

√
1t
2π
, 1

2
− 1

2
e12

√
1t
2π
, 0); p23 = (0, 1

2
+ 1

2
e23

√
1t
2π
, 1

2
− 1

2
e23

√
1t
2π
); p13 =

( 1
2
+ 1

2
e13

√
1t
2π
, 0, 1

2
− 1

2
e13

√
1t
2π
).
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FIG. 19. The projection triangle for a 160–80–120 degree junction with (solid) and without (dotted) a constant
component to the motion:p12 = ( 1

2
+ 1

2
e12

√
1t
2π
, 1

2
− 1

2
e12

√
1t
2π
, 0); p23 = (0, 1

2
+ 1

2
e23

√
1t
2π
, 1

2
− 1

2
e23

√
1t
2π
); p13 =

( 1
2
+ 1

2
e13

√
1t
2π
, 0, 1

2
− 1

2
e13

√
1t
2π
).

2. Scale and rotate each curve defined byθi j (·) according to

θ̃ i j (r ) = θi j

(
r0

rpi j

r

)
+ θpi j − θi j (r0), (10)

where

pi j =
(

1

2
+ 1

2
ei j

√
1t

2π

)
êi +

(
1

2
− 1

2
ei j

√
1t

2π

)
êj ,

r0 =
∥∥∥∥( θ1

2π
,
θ2

2π
,
θ3

2π

)
− 1

2
(êi + êj )

∥∥∥∥,
êi =


(1, 0, 0) if i = 1
(0, 1, 0) if i = 2
(0, 0, 1) if i = 3

and(rpi j , θpi j ) are the polar coordinates of the point,pi j . This gives a simple expression
for each branch of the desired projection triangle,

{
(r, θ̃i j (r )) : 0≤ r ≤ rpi j

}
.

Note that we have scaledr in the first term of Eq. (10) so that̃θi j (·) is defined on the
appropriate domain, [0, rpi j ]. The remaining two terms simply rotate each curve so that
property (a) above is satisfied.

Combining this algorithm with that of the previous section gives a method for evolving
junctions according to the multiphase model:
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FIG. 20. A test problem for a 160–80–120 degree junction. Here,(γ12, γ23, γ13) = (sin( 8
9
π), sin( 4

9
π),

sin( 2
3
π)) and(e12, e13, e23) = (−2,− 1

2
, 3

2
).

MULTIPHASE MOTION ALGORITHM. Given an angle configuration(θ1, θ2, θ3), coeffi-
cients(γ12, γ13, γ23), and constants(e12, e13, e23):

BEGIN
(1) Construct a projection triangle according to

the Projection Triangle Algorithm for Multiphase Motion.
(2) Carry out steps (2)–(5) of the Generalized Curvature Algorithm

using the projection triangle derived in step (1).
END

5.2. Numerical Experiments

We now apply the Multiphase Motion Algorithm to the case where each branch of a
junction moves with a different normal velocity,vn= γi j κ + ei j .

For example, consider the evolution of the three phase problem given in Fig. 20. Using
the Multiphase Motion Algorithm withf = f2 (see Eq. (8)), the position of the triple point
and the change in the area ofÄ1 were compared with the exact results (see Footnote 6) for
several1t . The results from a number of experiments are reported in Table V.

TABLE V

Results for a 160–80–120 Degree Junction

Junction position Phase area change forÄ1

1t |Error| Conv. rate |Error| Conv. rate

0.01 6.82e-02 — 2.61e-02 —
0.005 4.64e-02 0.56 1.83e-02 0.51
0.0025 3.20e-02 0.54 1.29e-02 0.51
0.00125 2.22e-02 0.53 9.11e-03 0.50
0.000625 1.55e-02 0.52 6.43e-03 0.50
0.0003125 1.09e-02 0.51 4.56e-03 0.50
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These results are suggestive of anO(
√
1t) error which is experimentally the same as

that found for pure motion by curvature.

6. SHAPE CHANGES WITH MANY PHASE REGIONS

In the previous section, we described a method for evolving a three phase junction with
a normal velocity,vn= γi j κ + ei j . To extend this method tor phase regions, we apply two
additional considerations:

(1) For each point on the domain, the three largestUi , 1≤ i ≤ r , are sharpened ac-
cording to the projection triangle for those components. All remaining components are set
to zero during sharpening.

(2) The functionfn (see Eq. (8)) is extended tor phase regions:

fn(U) =
∑

1≤i≤ j≤r

(
Uγi j

/∣∣∣∏ 1≤k≤r
k 6=i,k 6= j

U
γi j

k

∣∣∣n)∑r

l=1

∑
1≤i≤ j≤r

(
Uγi j

l

/∣∣∣∏ 1≤k≤r
k 6=i,k 6= j

U
γi j

k

∣∣∣n) .
Applying these modifications to the Multiphase Motion Algorithm gives a method for
approximating the model (1) when many phase regions are present. We have found that the
results from this method agree with the recent variational approach given in [18] even when
topological mergings and breakings occur.

For example, consider the evolution of the four phase problem given in Fig. 21a. Using our
diffusion-generated approach withf = f1 and a step size of1t = 0.000125, the interfaces
were determined for several times,t (see Figs. 21b–21d). These results agree well with the
variational approach (cf. Fig. 22).

Our new algorithm also naturally treats problems which involve the formation of junc-
tions. Consider, for example, the evolution of the four regions given in Fig. 23a. Using our
diffusion-generated approach withf = f1 and a step size1t = 0.00025, the interfaces were
determined for several times,t . Here, we find that the interface between the regionsÄ1 and
Ä2 travels to the right to form two new junctions (see Fig. 23b). These triple points eventu-
ally move to the top and bottom of regionsÄ3 andÄ4 as is shown in Figs. 23c and 23d. It
is noteworthy that this example cannot be treated using the variational approach [18], since
that method is inconsistent with the given values ofγi j .

7. SUMMARY

In this work, we have presented a diffusion-generated approach for evolving multiple
junctions according to the multiphase model (1). Our method naturally treats topological
mergings and breakings, produces no overlapping regions or vacuums, and can be made
very fast. We have also shown that our approach may be applied to an important class of
problems which cannot be treated using other methods (see the previous section).

Asymptotic expansions were also given to explain why our method reproduces the correct
junction angles (to withinO(

√
1t)) and numerical studies were provided to show that our

approach agrees with front tracking [4] and a recent variational method [18] on a variety of
simple problems.

Further work suggested by the results of this paper include a more detailed theoretical
investigation of our method and an extension to the full range of possible model problems
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FIG. 21. A test problem at various times,t . Here(γ12, γ13, γ14, γ23, γ24, γ34) = ( 5
4
, 3

4
, 5

4
, 1, 3

2
, 1), (e12, e13, e14,

e23, e24, e34)= (−1
2
, 1

2
,−3

2
, 1,−1,−2) and all angles are prescribed by the classical condition (3).

FIG. 22. The solution from the variational approach att = 0.03.
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FIG. 23. A test problem at various times,t . Here(γ12, γ13, γ14, γ23, γ24, γ34)= (1, 1, 1, sqrt(3)
2
, 1, 1

2
), (e12, e13,

e14, e23, e24, e34)= (−4,−1, 0, 3, 4, 1) and all angles are prescribed by the classical condition (3).

(currently, our approach cannot be applied if someγi j is sufficiently small; see subsec-
tion 4.2). Finally, extensions to anisotropic motions (e.g., [7]) and to constrained motions
(e.g., [15]) would be of interest.
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